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I. INTRODUCTION 

 
Abstract—The key to design algorithms of higher-order finite 

element-boundary integral-multilevel fast multipole algorithm 
(FE-BI-MLFMA) is how to construct preconditioners for the 
FEM matrix part in the FE-BI matrix equation. A hybrid h- and 
p-Type multiplicative Schwarz (h-p-MUS) preconditioner is 
proposed for 3D scattering in this paper. First, the hierarchical 
higher-order FEM matrix is rewritten by classifying unknowns 
into different groups corresponding to different FEM orders. 
Then a preconditioner is constructed by the p-type multiplicative 
Schwarz method (p-MUS). To further improve efficiency in the 
p-MUS construction, an h-type multiplicative Schwarz 
preconditioner is employed for different submatrices. Numerical 
experiments show that this preconditioning scheme can offer a 
better efficiency both in CPU time and memory requirement than 
previous algorithms. This h-p-MUS preconditioner for the FEM 
matrices is applied to different algorithms of FE-BI-MLMFA. 
Analysis and Numerical results show that the h-p-MUS 
preconditioned conventional algorithm (h-p-MUS-CA) has a 
better efficiency over other h-p-MUS preconditioned algorithms. 
A variety of numerical experiments are performed for complex 
objects in this paper, demonstrating that this h-p-MUS-CA 
exhibits superior efficiency in the CPU time and memory, and 
greatly improves the capability of the higher-order 
FE-BI-MLFMA. 
 

T has been shown that the hybrid finite element-boundary 
integral-multilevel fast multipole algorithm (FE-BI-MLFMA) 

is a general, accurate, and efficient computing technique for 
open region problems such as scattering/radiation problems. 
Since the FEM seriously suffers from the numerical dispersion 
error, especially for large scale computational domain, hence 
the higher-order FEM has to be employed for successfully 
modeling large problems [1]-[3].  

How to efficiently handle the FEM part of the FE-BI matrix is 
the key to design algorithms of FE-BI-MLFMA. A p-type 
multiplicative Schwarz (p-MUS) preconditioner was presented 
for the hierarchical higher-order FEM matrix in [4]. In the 
p-MUS preconditioner, the FEM unknowns are classified into 
different groups corresponding to different FEM orders. Then a 
preconditioner is constructed by the p-type multiplicative 
Schwarz method (p-MUS). In this construction, conventional 
ILU preconditioning techniques are usually performed to obtain 
the approximate inverses of submatrices. The computational 
efficiency of conventional ILU preconditioners still often 

 
 
. 

cannot be promised for the FEM matrices generated form vector 
wave equations, especially when the solution domain becomes 
electrically large. Recently, the algebraic multilevel 
inverse-based ILU preconditioner (MIB-ILU) was proposed for 
solving indefinite sparse FEM linear systems [5]. By employing 
the graph partition technique, this method reorders the original 
FEM matrix into the hierarchical multilevel structure. Next, the 
inverse-based ILU dropping strategy is adopted to construct a 
robust preconditioner. It has been verified that the MIB-ILU 
exhibits superior efficiency in the CPU time and memory. This 
method actually is an h-type multilevel multiplicative Schwarz 
(h-MUS) preconditioning approach.  

A hybrid h- and p-type MUS preconditioning algorithm 
(h-p-MUS) is proposed for hierarchical higher-order FEM 
matrices in this paper. In this h-p-MUS algorithm, the FEM 
unknowns are classified into different groups corresponding to 
different FEM orders. Then the p-type multiplicative Schwarz 
type preconditioner is applied to this rewritten FEM matrix. For 
computing the inverses of submatrices required in the p-MUS 
preconditioner construction, the h-MUS preconditioning 
approach is performed to obtain approximate inverses instead of 
the conventional ILU. Numerical experiments show that this 
h-p-MUS preconditioner has superior efficiency in both 
memory requirement and CPU time to previous 
preconditioners. 

 

II. H-P-MUS PRECONDITIONED ALGORITHMS OF FE-BI-MLFMA 
It is known that the problem of scattering by a complex target 

can be discretized by the hybrid FE-BI method [1] as.  
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where   [ ] [ ] [ ] [ ] [ ],  ,  ,  ,  II SS IS SIK K K K B are sparse FEM 

matrixes, [ ]P  and [ ]Q  are dense BI matrices. Since the FEM 
seriously suffers from the numerical dispersion error, especially 
for large scale computational domain, hence the higher-order 
FEM has to be employed for successfully modeling large 
problems.  

For large number of unknowns, equation (1) has to be solved 
by iterative solvers since the computational complexity of the 
matrix-multiplication in iterative solving procedure can be 
reduced to O(NlogN) by MLFMA. The iterative solution of (1) 
usually converges slowly due to the ill-conditioned FEM matrix 
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in (1). Hence, the key to design an efficient algorithm for (1) is 
how to construct a good preconditioner for the FEM part of (1). 

To construct a preconditioner for the hierarchical 
higher-order FEM matrix of (1), the multiplicative Schwarz 
method is employed first in this paper. To be more specific, the 
FEM matrix part in (1) is rewritten by classifying unknowns into 
different groups corresponding to different FEM orders. Taking 
the hierarchical second-order FEM matrix as example, namely, 
the following FEM matrix in (1) 
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 (2) 

is rewritten as 
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where subscript “1” corresponds to the first-order FEM 
unknowns, “2” to the second-order FEM unknowns. Then this 
rewritten FEM matrix is factorized as 
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(4) 

Based on this factorization, the preconditioning matrix of [K] 
can be approximated, according to the multiplicative Schwarz 
method, as 
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Since the inverse of [M] can be directly written out, a good 
preconditioner of [K] can be obtained as 
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The above construction procedure of the second-order 
hierarchical FEM matrix can be extended to any order FEM 
matrix. Since the principle of grouping is based on the order of 
unknowns, this preconditioner is called as p-type multiplicative 
Schwarz (p-MUS) preconditioner. It is worth to point out that (5) 
is obtained by dropping coupling term of 1

21 11 12K K K−−  . Thus, 
weaker the coupling of the different order basis functions, more 
efficient the p-MUS preconditioner. In practice, the hierarchical 
basis functions are orthogonalized before constructing p-MUS 
preconditioner. 

It is known from (6) that to obtain the preconditioner, namely 
1M −  , the inverses of 11K  and 22K  are required. Since 

completely computing inverses of 11K  and 22K  is still 
expensive, we usually compute approximations of the inverses 
of  11K  and 22K  instead. In this paper, we utilize an h-type 
multiplicative Schwarz (h-MUS) to obtain the approximations 
of the inverses of 11K  and 22K  instead of utilizing conventional 
incomplete LU factorization. Therefore, we name the 
so-obtained preconditioner as the h-p-MUS preconditioner. 

III. NUMERICAL RESULTS 
To demonstrate efficiency of the presented preconditioning 

algorithm described above, we compute scattering by a 
dielectric sphere. Table 1 lists the fill-in factors in the 
construction of the p-MUS preconditioner and h-p-MUS 
preconditioner and the CPU time required in these 
preconditioned solutions. It can be seen from table 1 that the 
fill-in factor in the h-p-MUS preconditioner construction is 
about half of that in the p-MUS preconditioner construction. 
The CPU time required in the h-p-MUS preconditioner 
construction is about 25% less than that in the p-MUS 
precondtioner construction. Furthermore, the h-p-MUS 
preconditioner performs better than the p-MUS preconditioner. 
Hence, the total CPU time in the h-p-MUS preconditioned 
solution is about 40% less than that of the p-MUS 
preconditioned solution.  
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TABLE 1 NUMERICAL PERFORMANCE OF THE H-P-MUS VERSUS THE P-MUS FOR THE DIELECTRIC SPHERE 

Order 
Unknowns Nonzeros 

Fill-in factor CPU  time (s) Number of iterations 

p-MUS h-p-MUS p-MUS h-p-MUS p-MUS h-p-MUS 

1st 17024 269312 22.0 10.6 14.9 8.1 

37 26 
2nd 73472 2048000 7.0 4.0 22.6 16.2 

3rd 171392 7328768 2.0 1.1 24.9 23.1 

Total 261888 9646080 3.6 2.0 197.7 114.6 
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